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Abstract

This document provides verification test results for normal, lognormal, and uniform distributions
that are used in Sandia’s Latin Hypercube Sampling (LHS) software. The purpose of this testing is
to verify that the sample values being generated in LHS are distributed according to the desired
distribution types. The testing of distribution correctness is done by examining summary statistics,
graphical comparisons using quantile-quantile plots, and format statistical tests such as the Chi-
square test, the Kolmogorov-Smirnov test, and the Anderson-Darling test. The overall results from
the testing indicate that the generation of normal, lognormal, and uniform distributions in LHS is
acceptable.
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1. Introduction

This document provides verification test results for the normal, lognormal, and uniform
distributions that are used in Sandia’s Latin Hypercube Sampling (LHS) software. The purpose of
this testing is to verify that the sample values being generated in LHS are distributed according to
the desired distribution types. The testing of distribution correctness is done by examining
summary statistics, graphical comparisons using quantile-quantile plots, and format statistical tests
such as the Chi-square test, the Kolmogorov-Smirnov test, and the Anderson-Darling test.

This document supports the Advanced Simulation and Computing (ASC) program’s Verification
and Validation (V&V) milestones. Many milestones use DAKOTA to perform uncertainty
quantification (UQ) studies. The goal of uncertainty quantification is to understand the effect input
uncertainties have on the uncertainty of the output, usually called a performance measure or
measure of interest. A common method of performing UQ involves the following steps:

1. Assume certain distributions on the uncertain input variables or input parameters

2. Sample from those distributions

3. Run the simulation model (e.g., a finite element code) with the sampled values

4. Repeat Steps 1-3 with different sample draws to build up a distribution of the outputs.

In practice, one needs to have a method for generating random samples from specified
distributions. At Sandia, we often use Latin Hypercube Sampling to generate samples. For many
ASC codes, we use DAKOTA to perform UQ. This is done by calling the UNIX version of LHS
from within DAKOTA. DAKOTA is a software toolkit which can call simulation models
iteratively to perform various types of analysis such as uncertainty quantification, reliability
analysis, parameter studies, and optimization studies. To perform an uncertainty quantification
study in DAKOTA, one specifies the distributions on the input parameters of interest, tells
DAKOTA to use LHS, and then DAKOTA does the overhead of calling the LHS code, getting
the generated sample values from LHS, sending these values to the simulation model, and
waiting for the simulation model to return the corresponding output values. DAKOTA allows
for parallel execution of samples if desired, and DAKOTA collates the results and outputs
various statistical measures of interest such as moments and percentiles of the output
distribution, correlations between inputs and outputs, etc.

This verification study is not focused on DAKOTA. Rather it is focused on the specific version of
LHS that is implemented within DAKOTA. The LHS code has a long pedigree and background, as
explained in the next section. The version of LHS that is implemented in DAKOTA is what we
refer to as the LHS UNIX Library/Standalone version because it may be called in library mode from
DAKOTA or it may be called as a standalone code. The UNIX version is very similar to the latest
LHS PC version developed by Greg Wyss, Sharon Daniel, and Kelly Jorgenson outlined in
SAND98-0210 (Wyss and Jorgensen, 1998). However, a group of DAKOTA developers including
Michael Eldred (the PI of the DAKOTA project), Laura Swiler, and Shannon Brown have made
some modifications to the code to port it to the UNIX/Linux environment and make it more
portable. LHS has undergone much testing over the years, and its widespread use has resulted in a
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lot of distributed testing. Also, Wyss and Jorgenson did some testing of the LHS distributions in
1993. However, these test results were not formally written up and since the code has undergone
some revisions with the porting to a UNIX environment, we thought it best to have a fresh start for
the ASC milestones. DAKOTA has many advanced capabilities for UQ, including analytic
reliability methods, stochastic finite element, and optimization under uncertainty. However, most
users start with LHS for UQ: LHS is a core capability. LHS is used from within DAKOTA to
support many of the ASC UQ milestones. This is the rationale for performing the verification
studies on LHS.

The outline of this report is as follows: Section 2 provides information about the pedigree and
background of the LHS code. Section 3 provides details about the verification and comparison
methods used. Section 4 provides results for the normal distribution, Section 5 provides results for
the lognormal distribution, and Section 6 provides results for the uniform distribution. Section 7
provides the results from some large scale testing, and Section 8 is the summary.

2. LHS Pedigree and Background

For more than twenty years, the Latin hypercube sampling (LHS) program has been successfully
used to generate multivariate samples of statistical distributions. Its ability to use either Latin
hypercube sampling with both random and restricted pairing methods has made it an important part
of uncertainty analyses in areas ranging from probabilistic risk assessment (PRA) to complex
simulation modeling.

Latin hypercube sampling was developed to address the need for uncertainty assessment for a
particular class of problems. Consider a variable Y that is a function of other variables Xj, X3, ...,
X;. This function may be very complicated, for example, a computer model. A question to be
investigated is “How does Y vary when the Xs vary according to some assumed joint probability
distribution?” Related questions are “What is the expected value of ¥Y?” and “What is the 99
percentile of Y?”

A conventional approach to these questions is to apply Monte Carlo sampling. By sampling
repeatedly from the assumed joint probability density function of the Xs and evaluating Y for each
sample, the distribution of Y, along with its mean and other characteristics, can be estimated. This
approach yields reasonable estimates for the distribution of Y if the value of n is quite large.
However, since a large value of n requires a large number of computations from the function or
program of interest, which is potentially a very large computational expense, additional methods of
uncertainty estimation were sought.

An alternative approach, which can yield more precise estimates, is to use a constrained Monte
Carlo sampling scheme based on the idea of sample stratification. One such scheme, developed by
McKay, Conover, and Beckman (1979), is Latin Hypercube Sampling. LHS selects n different
values from each of k variables Xj, ... X} in the following manner. The range of each variable is
divided into n nonoverlapping intervals on the basis of equal probability. One value from each
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interval is selected at random with respect to the probability density in the interval. The n values
thus obtained for X, are paired in a random manner (equally likely combinations) with the » values
of X,. These n pairs are combined in a random manner with the »n values of Xj to form # triplets,
and so on, until n k-tuplets are formed. This is the Latin hypercube sample. It is convenient to
think of this sample (or any random sample of size 7) as forming an (n X k) matrix of input where
the i™ row contains specific values of each of the k input variables to be used on the i/ run of the
computer model. For more information about the sampling method, see Wyss and Jorgenson
(SAND98-0210) or Swiler and Wyss (SAND2004-2439).

The original version of LHS developed at Sandia National Laboratories was documented in
SANDS83-2365 (Iman and Shortencarier). This code was substantially revised, extended, and
upgraded in the mid-1990s. Gregory Wyss, Sharon Daniel, and Kelly Jorgensen designed and
implemented much of this upgrade to the LHS software, converting it from Fortran 77 to Fortran
90, adding more than 25 new distributions, and including functionality that made the code much
more portable. The revised version also included development of a Windows-based user interface
to assist the user with input preparation as well as a graphical output system to support plotting of
distributions generated by LHS. The documentation of the capabilities of the revised LHS code is
presented in SAND98-0210 (Wyss and Jorgensen, 1998).

Michael Eldred, Sharon Daniel, Laura Swiler, and Shannon Brown ported the 1998 version of LHS
(which was primarily designed for a Windows platform) to a Linux/UNIX environment in 2003-
2004. This process involved writing some additional functionality to allow the LHS code to be
called as a library from within the DAKOTA software environment (“input-by-call” vs. input by
file), as well as some changes to modernize the code and make it more compatible with the needs of
advanced simulators (e.g., converting single precision variables to double precision). The version
of LHS that runs under a Linux or UNIX operating system can be compiled to run in two ways:
called as a library or as a standalone LHS code run with file input (SAND2004-2439).

The Latin Hypercube Sampling code has a long pedigree, as evidenced by its history outlined
above. While code longevity does not directly imply anything about code verification, it is likely
that significant problems with the distributions would be noticed over many years of use. The
purpose of this document is to supplement any previous testing of the distributions done formally or
informally, and provide written documentation of the test results.



3. Verification Test Methods

There are many methods available to compare sample values with the true underlying distribution.
This section draws heavily on the Simulation Modeling and Analysis textbook by Law and Kelton
[1991] as well as the information provided by the National Institute of Standards in their
Engineering Statistics Handbook [NIST e-Handbook].

There are three approaches we take for verification of the LHS distributions:
1. Summary Statistics
2. Graphical Comparisons
3. Formal Statistical Tests

These are explained in more detail below. Much of the actual testing was done using the Minitab
and JMP software packages.

Summary Statistics

One of the first things to look at when analyzing a set of sample values are summary statistics about
the sample, including the mean, standard deviation, skewness, and kurtosis. The skewness
measures the symmetry of the distribution, and the kurtosis measures the weight of the tails in the
distribution. Quantile summaries, which list various percentiles of the distribution, are also useful
in determining whether the underlying distribution is symmetric or skewed, identifying any outliers,
etc. Histograms and box plots (which are graphical representation of the quantiles, usually the
quartiles) are also useful to understand the shape and spread of the data.

Finally, in the case where the samples are generated from a known distribution, one can perform
statistical tests of various hypothesis, such as does the sample population mean equal the “true”
mean with some confidence level, etc.? Comparing statistical measures such as mean and variance
with the “true” distribution does not test the correctness of the entire distribution, but it provides
useful information in the initial phase of verification.

Graphical Comparisons

Although these are not “formal” tests, one of the most common ways of testing for normality
involves a graphical comparison. A probability plot graphically shows the comparison between
the empirical distribution function (ECDF) calculated from the data, and the CDF of the “true”
distribution function. Given a set of data, X, X», ..., Xy, the i order statistic is denoted X It1s
the i™ smallest of the sample values X, X, ...,Xn. If one has a set of ordered sample points Xy,
X @), ... Xy, the ECDF is defined as Fy , where

i
FN(X(U) = N
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This is the proportion of the sample values that are less than or equal to X;.

The probability plot is a graph of the sample probability F, (X ) vs. the fitted distribution
probability F(X ). If these values are close, then the P-P plot will be approximately linear with

an intercept of zero and a slope of 1. If the probabilities are plotted against each other, it is called a
P-P plot. If the quantiles are plotted against each other, it is called a Q-Q plot. Sometimes the
probability is plotted against the quantile as shown in Figure 1. In this case, the sample values fall
very close to the line, indicating the data likely follows a normal distribution.

Probability Plot of Normall
Normal

99

95
90

80+
70
60
50
40
30+
20+

101
5

Percent

0.1 T T T T
-3 -2 -1 0 1 2 3
Normall

Figure 1. Example P-Q plot for the Normal Distribution

Formal Statistical Tests

There are a number of formal statistical tests, called “goodness-of-fit” tests. These tests are based
on various types of hypotheses. The null hypothesis is:

H,: The sample data X;, X, ..., Xy are independently, identically distributed

random variables with the distribution function F.

In practice, the hypotheses usually take the form: is a test statistic calculated from the sample data
less than or greater than some threshold value, based on the distribution of the test statistic. If the
test statistic calculated from the data is less than (or greater than, depending on the test), we can
then accept the null hypothesis. However, Law and Kelton [1991] make an important point: failure
to reject the null hypothesis should NOT be interpreted as accepting the null hypothesis is true.
Some of these tests are not powerful for small sample sizes, and some tests are not very sensitive to
small changes between the data and the fitted distribution. Thus, the tests are more useful for
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detecting gross differences to a fitted distribution. Note also that most of these tests can be adapted
for various distribution functions but some are specific to a particular distribution function. Finally,
although most of the tests can be applied to a general distribution function, in practice, most of the
statistical software packages have only implemented the tests for common distribution functions
such as the normal distribution.

Chi-Square Tests

The oldest goodness-of-fit hypothesis test is the Chi-Square test. It involves a comparison between
an empirical histogram based on the sample data and the density of the fitted distribution (the
underlying distribution to which we are comparing). To calculate the Chi-Square test statistic, one
divides the entire range of the fitted distribution into k intervals, for example [ap,a)), [a1,a2), ....[ak
1,ax). If N; = the number of sample X values in the jth interval [a;.1,a;), then the test statistic is:

i (N, Np,)
J=1 j
Where N is the total number of samples and p; is the expected proportion of the sample values that

should fall in the jth interval: p, = I f(X)dX . Thus, the test statistic measures the normalized
squared differences between the number we expect in each bin according to an underlying
distribution, and how many sample values there actually are. The y° test statistic should be small if

the fit is good. The decision is to reject the null hypothesis if ¥° > 7/, ,_, , where k is the number

of bins, and Zlf—l,l—a is the upper 1-a critical value for a chi-square distribution with k-1 degrees of

freedom. The critical value changes slightly if one estimates the parameters of the distribution from
the data, which reduces the degrees of freedom.

The difficulty with implementing a y”test is selecting the number and the size of the intervals.
The test is sensitive to the choice of bins. Some approaches recommend choosing the intervals so
that they are equiprobable: p;=p,=... px. Additionally, to ensure validity of the test, there should
be no intervals where the expected number in that interval is less than five. Thatis, Np, 25Vj. It

is also recommended that the number of bins be at least three. This test works best with a large
number of samples, and the test statistic is only valid at level o asymptotically as N> co.

Kolmogorov-Smirnov

The Kolmogorov-Smirnov (K-S) test is used to detect if a sample population comes from a
certain distribution. The K-S test is based on the empirical distribution function (ECDF) which
was defined above. Recall that for a set of data, X;, X», ...,Xn, the i order statistic is denoted
X). It is the i™ smallest of the sample values X, Xy, ...,Xn.
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The K-S test statistic is based on the difference between the empirical CDF and the “true” CDF.
The K-S test statistic, D, is defined as :
max

-l i
D= i N)(F(Xm )-—,— —F(Xm)j.

N'N

In this formula, F (X)) is the theoretical cumulative distribution function (CDF) of the distribution

against which we are trying to test. This distribution must be a continuous distribution, and its
parameters must be specified and not estimated from the data. Note that the distribution of the K-S
test statistic itself does not depend on the underlying cumulative distribution function being tested.
Another advantage is that it is an exact test for any number of points N, whereas the Chi-square test
is valid in only asymptotically. The K-S test eliminates the need for binning data and specifying
intervals as in the chi-square test. However, the K-S test does have limitations. It is mainly used
for continuous distributions and is not easily applied to discrete distributions. It tends to be more
sensitive near the center of the distribution than at the tails. And the distribution must be fully
specified (e.g., the location, scale, and where appropriate, shape parameters of the distribution must
be given). These parameters should NOT be estimated from the data. In recent years, the K-S test
has been extended to allow for estimation of the parameters from the data. It was not possible to
tell from the Minitab documentation how they are correcting the K-S test, since they are estimating
the parameters.

Anderson-Darling test

One drawback to the K-S test is that it gives the same weight to the difference|F v(X)-F(X )| for

every value of X. However, many distributions differ primarily in the tails. The Anderson-Darling
test is designed to detect discrepancy in the tails and has higher power than the K-S test for many
distributions.

The A-D test statistic 4’ is defined as:
A = N[ [Fy(X)- FCOPY(X) f(X)dX
1
F(X)(1-F(X))
average of the squared differences |F v(X)-F(X )|2 and the weights are largest for the tails of F(X),

Where y(X)is the weight function y(X) = This means that 4’ is a weighted

where F(X) is close to zero or one. The form of the test is to reject the null hypothesis if A’

exceeds some critical value that is a function of N and o. Tables of these critical values have been
compiled for a few distributions, including the normal distribution.

Shapiro-Wilk/Ryan-Joiner

The Shapiro-Wilk and Ryan-Joiner test are very similar, and based on the correlation one would
expect between the sample data set and the data one would expect if the underlying distribution
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were normal. The test statistic, W, is constructed so that small values of W are evidence of
departure from normality. The test statistic is:

N

(Z an(f) )2

W — Ni:I
(X, - )’
i=1

where q; are constants generated from the moments of the order statistics.

Statistical Software

Minitab offers three tests for normality: the Anderson-Darling test, the Ryan-Joiner test, and the
Kolmogorov-Smirnov test. Minitab does not offer a test for uniform distributions, however it is
possible to construct a Chi-square test statistic from the data and test that. JMP uses a
Kolmogorov-Smirnov test to detect normality when the mean and variance of the fitted distribution
are known; it uses a Shapiro-Wilks test when the mean and variance of the underlying distribution
are not known. JMP also does not specifically have a test constructed for the uniform distribution.
Both JMP and Minitab offer a variety of probability and quantile plots, as well as summary
statistics about the sample data.

4. The Normal Distribution

The LHS software implemented in DAKOTA provides the user with two different methods for
sampling from the normal distribution. The normal distribution is defined by the density function

55

1
f(x)—o_m -0 < x < oo,

where the distribution mean and variance are j1 and 67, respectively. The standard deviation of the
distribution, which is required by LHS as an input parameter for several normal distribution
sampling methods, is denoted by 6. The first sampling method for the normal distribution samples
over all quantiles. The bounded normal method samples a normal distribution that is bounded.

For the purposes of the V&V analysis of the regular normal distribution in LHS, three runs of the
LHS code were performed in DAKOTA. Each run involved 2 normally distributed, uncorrelated
random variables. Each random variable was chosen from the standard normal distribution, with
zero mean and standard deviation of one. The first run had 100 samples, the second run had 1000
samples, and the third run had 10,000 samples. The sections below provide results of testing with
these sample data sets.
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Summary Statistics: N =100

For the 100 sample data sets, here are the results from Minitab:
Descriptive Statistics: 1n100

Variable N Mean SE Mean StDhev Minimum 01 Median 03 Maximum
TF1ln 100 -0.005 0.101 1.008 -2.887 -0.680 0.005 0.676 2.473

Descriptive Statistics: 2n100

Variable N Mean SE Mean StDhev Minimum 01 Median 03 Maximum
TF2n 100 0.006 0.102 1.017 -2.655 -0.691 -0.000 0.670 3.010

For a N(0,1) distribution, we expect the sample mean and standard deviation to be approximately
zero and one. For the two samples we took with N=100, we see this. We also expect the 25" and
75" percentiles to be -0.6745 and +0.6745 respectively. These percentiles are approximately
correct. Finally, note that the maximum and minimum vary quite a bit.

To test if the mean of the sample data truly is zero, based on the assumption that the underlying
distribution is normal, we can use a t-test, where:
Hy: w=0; Hye: n#0.

The hypothesis test is to accept H, at significance level o if ‘t*‘ < t(l—O/ ,n—1). For data set

—.005 =0.0495 <#(1- %/, ,n—1)=1.9842. Thus, we accept the null

0.101
hypothesis that the mean is equal to zero. The same conclusion can be made for data set 2n100.

*

t

In100, we have:

To test if the variance of the sample data is one, based on the assumption that the underlying
distribution is normal, we can use a Chi-square test, where:

H,:0°=1LH,:0° #1
The  hypothesis test is to  accept H, at significance level o if
2
Ve (% ,n—=1)< w <y (- a2 ,n—1) where s is the sample variance. For data set In100,
O-U
we have: z*(%/,n—1)=73336<100.59 <128.42 = 7°(1-%/,n~1) and thus we can accept

the null hypothesis that the variance is equal to one. The same conclusion can be made for 2n100.

Graphical Comparisons: N =100

The graphical comparisons with a quantile plot of the sample data (red points) vs. a normal
distribution (blue line) in Figures 2 and 3 show the agreement is very good for both sample sets:
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Figure 2. P-Q plot of the 1* Normal LHS sample, with sample size = 100
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Figure 3. P-Q plot of the 2" Normal LHS sample, with sample size = 100




Formal Tests: N =100

The Anderson-Darling test statistic as calculated in Minitab for 1n100 is 0.025, with a p-value of
1.00. The interpretation of this is that if the p-value is less than the desired significance level a,
then one must reject the null hypothesis. Otherwise, the null hypothesis is accepted. In this case,
for ow = 0.05, we accept the null hypothesis that the data do follow a normal distribution. We also
accept the Anderson-Darling test for the second data set of 100 points, 2n100, with a test statistic of
0.034.

The Kolmogorov-Smirnov test statistic as calculated in Minitab for 1n100 is 0.013. Minitab only
gives a p-value for this test, and specifically the output is p> 0.15, meaning that p-value is greater
than 0.15. Since we usually have an alpha value of 0.05 or 0.10, then we would accept the null
hypothesis that the data do follow a normal distribution according to this test. The KS test statistic
for 2n100 is 0.015. The p-value for the second data set was also p>0.15.

The Ryan-Joiner test resulted in accepting the null hypothesis for both data sets, but at a weaker
level than the above two test. The Ryan-Joiner test statistic for both data sets was the same, a value
0f 0.999. The p-value in both cases was p>0.10. Thus, for an alpha value of 0.05, we would still
accept the null hypothesis.

The results from JMP are shown in Figure 4. JMP produces much of the same output as Minitab
does, in a different format. A histogram of each of the 2 samples is shown in green, with a
probability density function for the “true” normal(0,1) overlaid in red. The quantile-quantile plot is
shown at the top. The quantiles, moments, and confidence intervals for the mean and standard
deviation are listed. Finally, a Kolmogorov-Smirnov goodness-of-fit test is performed. Note that
the K-S test statistic is slightly different than that calculated in Minitab. In Minitab, the K-S test
statistic is 0.013 and 0.015 for samples 1 and 2, respectively, while in JMP it is .00999 and
0.00998. This difference is due to the fact that Minitab is using the sample mean and standard
deviation, while JMP is using the specified (0,1) mean and standard deviation. The difference may
also be due to slight differences in the way people calculate the empirical distribution function:
some approaches normalize it. Note that the last section in JMP states that the probability that the
test statistic is greater than D is 25% in both cases. This means that the probability of obtaining a
greater test-statistic value D by chance alone is 25%. To see if D is significant, we can use the

approximation given in [Law and Kelton]: reject H, if: (\/ﬁ +0.12 +EJD >c,_,, where the

JN
value of ¢;¢ is 1.38 when ot = 0.05. In the case of sample 1, this test reduces to: 10.131*0.009998

=0.1013 > 1.38 which is not true, so we do not reject the null hypothesis that this data comes from
a normal distribution.
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Figure 4. Summary Statistics, Normal Distribution, N = 100
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Summary Statistics: N =1000

For the 1000 sample data sets, here are the results from Minitab:

Descriptive Statistics: 1n1000, 2n1000

Variable N Mean SE Mean StDev Minimum 01 Median 03 Maximum
1Inl1000 1000 -0.00047 0.0316 1.0005 -3.5476 -0.6748 -0.0001 0.6760 3.0986
2n1000 1000 -0.00004 0.0316 1.0003 -3.2397 -0.6751 0.0001 0.6747 3.2419

We see that the mean and standard deviation are closer to (0,1) than the values obtained from the
100 point sample sets. Also, the 25™ and 75" percentiles are very close to the expected values of
-0.6745 and +0.6745 respectively.

As before, we use a t-test to test if the mean is zero: H,: w=0; Hy: w#0.

The hypothesis test is to accept H, at significance level o if ‘t*‘ <t(1-¢ 5N —1). For data set

—.00047
0.0316
hypothesis that the mean is equal to zero. The same conclusion can be made for data set 2n1000.

*

In1000, we have:

t

=0.0149 <¢(1- 0‘2,11 —1)=1.9842. Thus, we accept the null

To test if the variance of the sample data is one, based on the assumption that the underlying
distribution is normal, we can use a Chi-square test, where: H  : c’=1LH 4 o’ #1.

The  hypothesis test is to  accept H, at  significance level a if
)

2
Ve (O/,n -1 < (n—zs <x’(1-9% ,n—1) where s° is the sample variance. For data set
2 o 2

1n1000, we have: y*(%/,n—1)=73.336<99.099 <128.42 = y*(1-%/,n—1) and thus we can
2

accept the null hypothesis that the variance is equal to one. The same conclusion can be made for
2n1000.

Graphical Comparisons: N =1000

The graphical comparisons with a quantile plot of the sample data (red points) vs. a normal
distribution (blue line) in Figures 5 and 6 show the agreement is very good for both sample sets:
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Figure 5. P-Q plot of the 1* Normal LHS sample, with sample size = 1000
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Figure 6. P-Q plot of the 1* Normal LHS sample, with sample size = 1000
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Formal Tests: N =1000

The Anderson-Darling test statistic as calculated in Minitab for In1000 is 0.004, with a p-value of
1.00. The interpretation of this is that if the p-value is less than the desired significance level a,
then one must reject the null hypothesis. Otherwise, the null hypothesis is accepted. In this case,
for ow = 0.05, we accept the null hypothesis that the data do follow a normal distribution. We also
accept the Anderson-Darling test for the second data set of 1000 points, 2n1000, with a A-D test
statistic of 0.003 with a p-value of 1.00.

The Kolmogorov-Smirnov test statistic as calculated in Minitab for 1n1000 is 0.001. Minitab only
gives a p-value for this test, and specifically the output is p> 0.15, meaning that p-value is greater
than 0.15. Since o = 0.05, then we would accept the null hypothesis that the data do follow a
normal distribution according to this test. The KS test statistic for 2n1000 is also 0.001, with
p>0.15.

The Ryan-Joiner test resulted in accepting the null hypothesis for both data sets. The Ryan-Joiner
test statistic for both data sets was the same, a value of 1.0. The p-value in both cases was p>0.10.
Thus, for an alpha value of 0.05, we would still accept the null hypothesis.

The results from JMP are shown in Figure 7. JMP produces much of the same output as Minitab
does, in a different format. A histogram of each of the 2 samples is shown in green, with a
probability density function for the “true” normal(0,1) overlaid in red. The quantile-quantile plot is
shown at the top. The quantiles, moments, and confidence intervals for the mean and standard
deviation are listed. Finally, a Kolmogorov-Smirnov goodness-of-fit test is performed. In this case,
the K-S statistic is the same as that calculated in Minitab.

To see if D is significant, we can use the approximation given in [Law and Kelton]: reject H, if:

(\/ﬁ +0.12 +EJD > c,_, » Where the value of ¢j.¢ 1s 1.38 when ot = 0.05. For both sample sets

JN

1 and 2, we do not reject the null hypothesis that this data comes from a normal distribution.
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Figure 7. Summary Statistics, Normal Distribution, N = 1000
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Summary Statistics: N =10000

For the 10000 sample data sets, here are the results from Minitab:
Descriptive Statistics: 1n10000, 2n10000

Variable N Mean SE Mean StDev Minimum 01 Median 03 Maximum
1n10000 10000 -0.0000421 0.0100 1.0001 -4.1141 -0.6745 0.0001 0.6745 3.8440
2n10000 10000 -0.0000125 0.0100 1.0000 -3.8754 -0.6746 -0.0000 0.6745 3.7556

We see that the mean and standard deviations are closer to (0,1) than the values obtained from the
1000 point sample sets, as expected. Also, the 25™ and 75™ percentiles are very close to the
expected values of -0.6745 and +0.6745 respectively.

As before, we use a t-test to test if the mean is zero: H,: n=0; Hy: w#0.

The hypothesis test is to accept H, at significance level o if ‘t*‘ < t(l—O/ ,n—1). For data set

—.0000421
0.01

null hypothesis that the mean is equal to zero. The same conclusion can be made for data set
2n10000.

*

1n10000, we have:

t

=0.00421<¢(1- a'z,n —1)=1.9842. Thus, we accept the

To test if the variance of the sample data is one, based on the assumption that the underlying
distribution is normal, we can use a Chi-square test, where: H  : c’=1LH e o’ #1.

The  hypothesis test is to  accept H, at  significance level a if

2
x (0{2 ,n—1)< % <y (- a2 ,n—1) where s° is the sample variance. For data set

1n10000, we have: ;/(0/ ,n—1)=73.336<99.02 <128.42 = y*(1- cy ,n—1) and thus we can

accept the null hypothesis that the variance is equal to one. The same conclusion can be made for
2n10000.

Graphical Comparisons: N =10000

The graphical comparisons with a quantile plot of the sample data (red points) vs. a normal
distribution (blue line) in Figures 8 and 9 show the agreement is very good for both sample sets:
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Figure 8. P-Q plot of the 1* Normal LHS sample, with sample size = 10000
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Figure 9. P-Q plot of the 1* Normal LHS sample, with sample size = 10000
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Formal Tests: N =10000

The Anderson-Darling test statistic as calculated in Minitab for 1n10000 is 0.000, with a p-value of
1.00. The interpretation of this is that if the p-value is less than the desired significance level a,
then one must reject the null hypothesis. Otherwise, the null hypothesis is accepted. In this case,
for ow = 0.05, we accept the null hypothesis that the data do follow a normal distribution. We also
accept the Anderson-Darling test for the second data set of 10000 points, 2n10000, with a A-D test
statistic of 0.000 with a p-value of 1.00.

The Kolmogorov-Smirnov test statistic as calculated in Minitab for 1n10000 and 2n10000 is zero.
Minitab only gives a p-value for this test, and specifically the output for both sample sets is p> 0.15,
meaning that p-value is greater than 0.15. Since o = 0.05, then we would accept the null hypothesis
that the data do follow a normal distribution according to this test.

The Ryan-Joiner test resulted in accepting the null hypothesis for both data sets. The Ryan-Joiner
test statistic for both data sets was the same, a value of 1.0. The p-value in both cases was p>0.10.
Thus, for an alpha value of 0.05, we would still accept the null hypothesis.

The results from JMP are shown below in Figure 10. Note that with 10000 samples, the histogram
(in green) is extremely close to the true distribution, when compared with the true normal density
(in red). Also note that the confidence limits about the mean and standard deviation are very tight,
as to be expected with such a large number of samples. However, the true mean and standard
deviation lie within the 95% confidence intervals. Finally, the KS test statistic is very small, 0.0001
for both samples. Again, using the approximation to see if D is significant, we would reject H, if:

(\/ﬁ +0.12 +EJD > c,_, » Where the value of ¢j.¢ 1s 1.38 when ot = 0.05. For both sample sets

N

1 and 2, we do not reject the null hypothesis that this data comes from a normal distribution.
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Figure 10. Summary Statistics, Normal Distribution, N = 10000

26



Table 1 summarizes the results of testing the normal distribution, showing that in all cases we
cannot reject the hypothesis of the underlying distribution being a N(0,1) distribution:

Test Statistic for Normal | Test Statistic Value Reject null
Distribution hypothesis?
N=100 Sample 1 Sample 2
Anderson-Darling 0.025 0.034 NO
Kolmogorov-Smirnov 0.013 0.015 NO
Ryan-Joiner 0.999 0.999 NO
N =1000

Anderson-Darling 0.004 0.003 NO
Kolmogorov-Smirnov 0.001 0.001 NO
Ryan-Joiner 1.0 1.0 NO
N=10000

Anderson-Darling 0 0 NO
Kolmogorov-Smirnov 0.0001 0.0001 NO
Ryan-Joiner 1.0 1.0 NO

Table 1. Summary Statistics, Normal Distribution
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5. The Lognormal Distribution

The LHS software implemented in DAKOTA provides the user with two different methods for
sampling from the lognormal distribution. The lognormal distribution is a distribution whose
logarithm is described by a normal distribution. The lognormal distribution is defined by the density
function:

1 (Inx-py )2
X)=———exp| -———
st xo 27 p{ 2¢6°

where the mean and variance of the underlying normal distribution are py and N2 respectively. In
DAKOTA, the user is required to enter the mean and either the standard deviation or error factor for
the lognormal distribution. These are related to the underlying normal distribution parameters by
the following formulas:

Uy = e(uNmﬁ,)’ Gzzv — eZﬂN+cf§1 (ecfﬁ, ~1.0) £,y = e(l.645*0N)

} -oo < x <oo,

Where YU,y is the mean of the lognormal distribution, O is the variance, and €; is the “error

factor” which is defined as the ratio of the 95™ percentile to the median of the lognormal
distribution.

For the purposes of the V&V analysis of the lognormal distribution in LHS, three runs of the LHS
code were performed in DAKOTA. Each run involved 2 lognormally distributed, uncorrelated
random variables. Each random variable was chosen so that the underlying normal distribution was
the standard normal distribution, with zero mean and standard deviation of one. This translates to a
lognormal mean of 1.647821, and a lognormal standard deviation of 2.161197. The DAKOTA
lognormal input specification using the error factor instead of the standard deviation was also tested
and produced nearly identical results to the samples generated with the standard deviation specified.
We present only the results using the standard deviation specification. As with the normal
distribution, the first run had 100 samples, the second run had 1000 samples, and the third run had
10,000 samples. The sections below provide results of testing with these sample data sets.

Note that the results here are presented a little differently than the results of the normal distribution
presented in Section 3. For each set of samples, we present both the raw data (the lognormal
distribution) and then we take the log of the samples and present the underlying normal distribution
based on the sample data. The formal statistical tests that are specific to the normal distribution can
then be applied to the log-transformed data.
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Summary Statistics and Graphical Comparison: N =100

Figure 11 shows the raw data based on the samples generated by LHS, and Figure 12 shows the
log-transformed data. There is one very important point to remember when examining this data.
The lognormal distribution has a long tail. In the data we generated with a lognormal mean of
1.648 and a lognormal standard deviation of 2.161, the 99™ percentile value of this distribution is
10.42. This means that in 100 samples generated by LHS, only one will lie in the bin from [10.42,
oo] because of the way the stratification is done. Thus, in these first two sample sets, we see a large
difference in the maximum values: Sample set 1In100 had a maximum value of 11.856, while
sample set 2In100 had a maximum value of 20.297. The difference in the maximum values greatly
affects the variance and standard deviation of the sample sets. The true value for the median of this
distribution is 1.0. Both samples have medians very close to this. The true 75™ percentile value is
1.963. Both samples are close to this, and likewise with the 90" percentile which has a true value
of 3.602. However, statistics of these 100 sample sets are not as good at matching the true 97.5"
percentile, which is 7.099, and the sample means and standard deviations are not very close to what
was specified in the input specification (a lognormal mean of 1.647821, and a lognormal standard
deviation 0f 2.161197).

The inability of the lognormal samples to match the specified means and standard deviations with
100 samples should not be of concern. With only 1% of the distribution lying in [10.42, o], there
will be only one LHS sample taken in this interval and the location of that particular sample will
strongly affect the mean and standard deviation. This does not mean that the sample generated is
not lognormal: when we transform to normal space and do the formal statistical tests, we see that
we cannot reject the hypothesis that the underlying distribution is normal. Furthermore, as we take
more samples, we see these statistics converge to their true estimates. This result is due to the fact
that we are sampling a very long-tailed distribution sparsely, and highlights the limitations of small
sample numbers if one wants to estimate tail probabilities accurately.

Finally, note a few things: The Kolmogorov-Smirnov-Lillifors test shows that we cannot reject the
null hypothesis of the data being lognormal. Also, note that the 95% confidence intervals around
the means and standard deviations DO capture the true values for sample 11n100. The true mean is
captured in the second sample, 2In100, but the standard deviation is not. However, these
confidence intervals are based on the assumption that the underlying distribution is normal. Thus,
they should not strictly be used in the case where we have a clearly non-normal distribution, but we
can examine these confidence intervals as a sanity check.
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[ Quantiles | [ Quantiles |
100.0% maximum 11.856 100.0% maximum 20.297
99.5% 11.856 99.5% 20.297
97.5% 8.117 97.5% 8.664
90.0% 3.590 90.0% 3.640
75.0% quartile 1.965 75.0% quartile 1.954
50.0% median 1.004 50.0% median 0.999
25.0% quartile 0.506 25.0% quartile 0.501
10.0% 0.271 10.0% 0.267
2.5% 0.124 2.5% 0.126
0.5% 0.056 0.5% 0.070
0.0% minimum 0.056 0.0% minimum 0.070
| Moments | Moments
Mean 1.6159356 Mean 1.7128431
Std Dev 1.8754683 Std Dev 2.4740275
std Err Mean 0.1875468 Std Err Mean 0.2474028
upper 95% Mean 1.9880692 upper 95% Mean 2.2037438
lower 95% Mean 1.243802 lower 95% Mean 1.2219424
N 100 N 100
| Confidence Intervals | | Confidence Intervals |
Parameter Estimate Lower CI Upper CI 1-Alpha Parameter Estimate Lower CI Upper CI 1-Alpha
Mean 1.615936 1.243802  1.988069 0.950 Mean 1.712843  1.221942 2.203744 0.950
Std Dev 1.875468  1.646674  2.178685 Std Dev 2474028  2.172213 2.874017
[Fitted LogNormal | [Fitted LogNormal
[Fixed Parameters | [Fixed Parameters
Parameter Value Fixed Lower 95% Upper 95% Parameter Value Fixed Lower 95% Upper 95%
Mu 0.000000 * . . Mu 0.000000 * . .
sigma 1.000000 * ' ; Sigma 1.000000 *
| Goodness-of-Fit Test | \ Goodness-of-Fit Test |
KSL Test KSL Test
D Prob>D D Prob>D
0.010269 > 0.1500 0.010205 > 0.1500

Figure 11. Summary Statistics, Lognormal Distribution, N =100

Figure 12 shows the log-transformed data for the 100 sample sets:
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100.0% maximum 2.473 100.0% maximum 3.010
99.5% 2.473 99.5% 3.010
97.5% 2.090 97.5% 2.152
90.0% 1.278 90.0% 1.292
75.0% quartile 0.675 75.0% quartile 0.670
50.0% median 0.00434 50.0% median -0.001
25.0% quartile -0.681 25.0% quartile -0.692
10.0% -1.305 10.0% -1.321
2.5% -2.104 2.5% -2.093
0.5% -2.889 0.5% -2.657
0.0%  minimum -2.889 0.0%  minimum -2.657
| Moments | Moments
Mean -0.005999 Mean 0.0050908
Std Dev 1.0078664 Std Dev 1.0168607
Std Err Mean 0.1007866 Std Err Mean 0.1016861
upper 95% Mean 0.1939831 upper 95% Mean 0.206858
lower 95% Mean -0.205982 lower 95% Mean -0.196676
N 100 N 100
| Confidence Intervals | | Confidence Intervals |
Parameter Estimate Lower CI Upper CI 1-Alpha Parameter Estimate Lower CI Upper CI 1-Alpha
Mean -0.006 -0.20598  0.193983 0.950 Mean 0.005091 -0.19668 0.206858 0.950
Std Dev 1.007866  0.884914  1.170813 Std Dev 1.016861  0.892811 1.181262
[Fitted Normal | [Fitted Normal |
[ Fixed Parameters | [Fixed Parameters |
Parameter Value Fixed Lower 95% Upper 95% Parameter Value Fixed Lower 95% Upper 95%
Mu 0.000000 * . . Mu 0.000000 * :
sigma 1.000000 * Sigma 1.000000 *

| Goodness-of-Fit Test |
KSL Test

D Prob=D
0.010269 > 0.2500

\ Goodness-of-Fit Test |
KSL Test

D Prob=D
0.010205 > 0.2500

Figure 12. Summary Statistics, Log-transformed Lognormal Distribution, N = 100

Note that the log transform of the lognormal data fits a normal distribution very well. In this case,
we can use the confidence intervals because they are valid, and the true values for the mean and
standard deviation (0,1) do fall within the confidence intervals in both sample sets. The quantile
plots and the KSL test verify that we cannot reject the hypothesis that the underlying samples come

from a normal distribution.
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Summary Statistics and Graphical Comparison: N = 1000

We perform a similar transformation for N=1000: first we look at the raw data, then log-transform
it. The raw data has a lognormal distribution shape, as shown in Figure 13. Note that in these
samples, the maximum value is in the mid-twenties. The 99.5™ percentile of the true distribution is
13.142. For 1000 samples, we expect 5 samples to lie above 13.142. Sample set 11n1000 and
sample set 21n2000 both have exactly 5 samples above this value. The 97.5™ percentile estimate is
more accurate than that generate in the 100-point sample sets, as expected. Most of the other
percentiles are more accurate as well. The standard deviation estimates are closer to 2.161, as
expected. We cannot reject the null hypothesis that these data sets come from a lognormal

distribution, based on the KSL test.

[ Distributions

| Goodness-of-Fit Test

KSL Test

D Prob>D

0.001369 =

Figure 13. Summary Statistics, Lognormal Distribution, N = 1000
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— LogNormal(0,1) — LogNormal(0,1)
[ Quantiles | [ Quantiles |
100.0% maximum 22.171 100.0% maximum 25.589
99.5% 13.843 99.5% 13.220
97.5% 7.187 97.5% 7.207
90.0% 3.600 90.0% 3.612
75.0% quartile 1.965 75.0% quartile 1.962
50.0% median 0.999 50.0% median 0.999
25.0% quartile 0.509 25.0% quartile 0.509
10.0% 0.276 10.0% 0.277
2.5% 0.139 2.5% 0.140
0.5% 0.074 0.5% 0.073
0.0% minimum 0.029 0.0% minimum 0.039
[Moments [ Moments
Mean 1.640772 Mean 1.6456627
Std Dev 2.0538219 std Dev 2.1022669
Std Err Mean 0.0649476 Std Err Mean 0.0664795
upper 95% Mean 1.7682212 upper 95% Mean 1.7761183
lower 95% Mean 1.5133227 lower 95% Mean 1.5152072
N 1000 N 1000
| Confidence Intervals | | Confidence Intervals |
Parameter Estimate Lower CI Upper CI 1-Alpha Parameter Estimate Lower CI Upper CI 1-Alpha
Mean 1.640772  1.513323  1.768221 0.950 Mean 1.645663 1.515207  1.776118 0.950
Std Dev 2.053822  1.967587  2.148021 Std Dev 2.102267  2.013998  2.198688
| Fitted LogNormal | [Fitted LogNormal |
| Fixed Parameters | | Fixed Parameters |
Parameter Value Fixed Lower 95% Upper 95% Parameter Value Fixed Lower 95% Upper 95%
Mu 0.000000 * ; Mu 0.000000 * :
Sigma 1.000000 * Sigma 1.000000 *



The log-transform of the 1000 point data sets follows a normal distribution very closely, as shown

below in Figure 14:

[ Distributions
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| Quantiles \ | Quantiles |
100.09% maximum 3.099 100.0% maximum 3.242
99.5% 2.628 99.5% 2.582
97.5% 1.972 97.5% 1.975
90.0% 1.281 90.0% 1.284
75.0% quartile 0.675 75.0% quartile 0.674
50.0% median -0.001 50.0% median -0.0008
25.0% quartile -0.676 25.0% quartile -0.676
10.0% -1.286 10.0% -1.284
2.5% <1971 2.5% -1.964
0.5% -2.598 0.5% -2.621
0.0% minimum -3.550 0.0% minimum -3.242
[Moments [Moments
Mean -0.001363 Mean -0.000934
Std Dev 1.0008375 Std Dev 1.0006722
std Err Mean 0.0316493 Std Err Mean 0.031644
upper 95% Mean 0.060744 upper 95% Mean 0.0611621
lower 95% Mean -0.063469 lower 95% Mean -0.063031
N 1000 N 1000
[ Confidence Intervals | [ Confidence Intervals |
Parameter Estimate Lower CI Upper CI 1-Alpha Parameter Estimate Lower CI Upper CI 1-Alpha
Mean -0.00136 -0.06347  0.060744 0.950 Mean -0.00093 -0.06303  0.061162 0.950
std Dev 1.000837 0.958815  1.046741 Std Dev 1.000672  0.958656  1.046568
[ Fitted Normal | [Fitted Normal |
[ Fixed Parameters | [Fixed Parameters |
Parameter Value Fixed Lower 95% Upper 95% Parameter Value Fixed Lower 95% Upper 95%
Mu 0.000000 * 2 Mu 0.000000 * :
Sigma 1.000000 * Sigma 1.000000 *
| Goodness-of-Fit Test | | Goodness-of-Fit Test |
KSL Test K5L Test
D Prob=D D Prob=D
0.001369 = 0.2500 0.001366 > 0.2500

Figure 14. Summary Statistics, Log-transformed Lognormal Distribution, N = 1000
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Summary Statistics and Graphical Comparison: N = 10000

We perform a similar transformation for N=10000: first we look at the raw data, then log-
transform it. The raw data has a lognormal distribution shape, as shown in Figure 15. Note that in
these samples, the maximum value is in the mid-forties. Again, this is an example of getting better
samples in the tails for long-tailed distributions as you increase the number of samples. The 99.95"
percentile of the true distribution is 26.86. For 10000 samples, we expect 5 samples to lie above
26.86. Sample set 1In10000 and sample set 2In20000 both have exactly 5 samples above this
value. The 97.5™ percentile estimate is more accurate than that generate in the 1000-point sample
sets, as expected. Most of the other percentiles are more accurate as well. The standard deviation
estimates are closer to 2.161, as expected. We cannot reject the null hypothesis that these data sets
come from a lognormal distribution, based on the KSL test. Note that as the number of samples
increases from 100 to 10000, we see the means and standard deviations from the sample sets
converging to the true values as shown in Table 2:

Sample Size  Case 1 Case 2 True Mean
100 1.616 1.713 1.648
1000 1.641 1.646 1.648
10000 1.647 1.647 1.648
True Std. Dev.
100 1.875 2.474 2.161
1000 2.054 2.102 2.161
10000 2.135 2.133 2.161

Table 2. Summary, Lognormal Distribution
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| Fitted LogNormal | | Fixed Parameters |

| Fixed Parameters | Pparameter Value Fixed Lower 95% Upper 95%
Parameter Value Fixed Lower 95% Upper 95% Mu 0.000000 : : |
Mu 0.000000 * . ) Sigma 1.000000
Sigma 1.000000 * [ Goodness-of-Fit Test |

|Goodness-of-Fit Test | KSL Test
KSL Test D Prob>=D

D Prob>D 0.000479 > 0.1500
0.000479 > 0.1500

Figure 15. Summary Statistics, Lognormal Distribution, N = 10000

Figure 16 shows the log-transform for the 10000-point data sets. Note that these data sets strongly
support the hypothesis that the underlying distribution is normal.
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Figure 16. Summary Statistics, Log-transformed Lognormal Distribution, N = 10000
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6. The Uniform Distribution

The LHS software implemented in DAKOTA provides the user with one method for sampling from
the uniform distribution. The uniform distribution is defined by the density function

1
f=——r U>L

where U and L denote the uppder and lower bounds of the uniform distribution, respectively. The
mean of the uniform distribution is given by: Y*+L and the standard deviation is given by:

(U +L) ‘
12

For the purposes of the V&V analysis of the uniform distribution in LHS, three runs of the LHS
code were performed in DAKOTA. Each run involved 2 uniformly distributed, uncorrelated
random variables. Each random variable was chosen from the uniform distribution with a lower
bound of zero and an upper bound of one. The mean of this distribution is 0.5, and the standard
deviation is 0.2887. As before, the first run had 100 samples, the second run had 1000 samples,
and the third run had 10,000 samples. The sections below provide results of testing with these
sample data sets.

Summary Statistics and Graphical Comparison: N =100

Figure 17 shows that the samples generated for a uniform with bounds [0,1] do follow a uniform
distribution. The mean is extremely close to 0.50 for both 1ul00 and 2ul00. The standard
deviation is also close to 0.2887 in both cases. The histogram shows that there are the same
number of points (10) in each bin [0,0.1) [0.1,0.2) etc. The stem-and-leaf graph is a little
misleading because of the way JMP does its rounding. For example, in case 2, the largest value on
the stem and leaf graph looks like there is a sample at 1.00. There is not a sample value of 1.00, but
instead, the largest value of this sample, 0.9987, is rounded up to 1.0 for the stem and leaf plot.
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[1uio0 |[2u100
1 1
0.9 0.9
0.8 0.8
0.7 0.7
0.6 0.6
0.5 0.5
0.4 0.4
0.3 0.3
0.2 0.2
0.1 0.1
0 0
[ Quantiles [ Quantiles
100.0% maximum 0.99330 100.0% maximum 0.99870
99.5% 0.99330 99.5% 0.99870
97.5% 0.98128 97.5% 0.98373
90.0% 0.89945 90.0% 0.50189
75.0% quartile  0.75046 75.0% quartile  0.74868
50.0% median  0.50209 50.0% median  0.49994
25.0% quartile  0.24824 25.0% quartile  0.24475
10.0% 0.09626 10.0% 0.09347
2.5% 0.01936 2.5% 0.02006
0.5% 0.00194 0.5% 0.00396
0.0% minimum 0.00194 0.0% minimum 0.00396
| Moments | Moments
Mean 0.4998626 Mean 0.5002382
Std Dev 0.2899215 Std Dev 0.2901503
Std Err Mean 0.0289922 Std Err Mean 0.029015
upper 95% Mean 0.5573893 upper 95% Mean 0.5578103
lower 95% Mean 0.4423358 lower 95% Mean 0.4426661
N 100 N 100
[ Confidence Intervals | [Confidence Intervals |
Parameter Estimate Lower CI Upper CI 1-Alpha Parameter Estimate Lower CI Upper CI 1-Alpha
Mean 0.499863  0.442336 0.557389 0.950 Mean 0.500238  0.442666 0.55781 0.950
Std Dewv 0.289922 0.254553 0.336795 Std Dev 0.29015 0.254754 0.33706
[ stem and Leaf | [ stem and Leaf |
Stem Leaf Count Stem Leaf Count
9| 0223467899 10 10 |0 1
8 | 00134456799 11 9 | 0023446689 10
7 | 023445679 9 8| 0013456678 10
6| 00133467789 11 7 | 0023445779 10
50122355789 10 6| 122445778 9
4 | 113445788 9 5| 00133467899 11
3|1133566899 10 4012346779 9
2 | 00134466889 11 3| 0234566889 10
1| 0023346688 10 2| 0134467889 10
0| 013455688 9 1|0133567789 10
0| 0134567899 10
0|0 represents 0.00

0|0 represents 0.00

Figure 17. Summary Statistics, Uniform Distribution, N =100

Formal statistical tests: N =100

Note that it is possible to apply some of the formal goodness-of-fit hypothesis testing to uniform

distributions.
specifically designed for testing if a distribution is normal.
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Neither Minitab nor JMP directly



supports testing for uniformity. However, we developed the test statistics based on the sample
values and performed the analysis.

Recall that the Chi-square test measures the difference between the expected proportion of samples
that will fall in the j™ interval, p;,» and the actual number of samples that falls in the jth interval, N;:

(N, Mm
—Z

J
where N is the total number of samples.

Because LHS is stratified, this test statistic will be zero. For example, if we divide the 100 samples
up into 10 bins, we expect that 10 samples will fall within the first bin [0, 0.1), 10 samples will fall
into the second bin [0.1, 0.2), etc. The results from these two LHS samples show that there are
indeed exactly 10 samples in the first bin, 10 samples in the second bin, etc.

The results of the y° test strongly support that the null hypothesis of a uniform distribution cannot

be rejected. Below is the Minitab output for this Chi-square test. Note that the p-value is 1.0,
meaning that the probability that one would obtain these results with a uniform distribution is
essentially 1.0.

Chi-Square Goodness-of-Fit Test for Observed Counts in Variable: 1u100

Test Contribution
Category Observed Proportion Expected to Chi-Sqg
1 10 0.1 10 0
2 10 0.1 10 0
3 10 0.1 10 0
4 10 0.1 10 0
5 10 0.1 10 0
6 10 0.1 10 0
7 10 0.1 10 0
8 10 0.1 10 0
9 10 0.1 10 0
10 10 0.1 10 0

N DF Chi-Sg P-Value
100 9 0 1.000

Because y’ test statistic will always be zero for uniform samples generated with LHS, pointing to

accepting the null hypothesis, I implemented one other test statistic as an additional verification
check.

Recall that the Kolmogorov-Smirnov test statistic, D, is given by:

max
ZQQSN{((“ __HXWJ
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Where one will reject the null hypothesis if: (\/ﬁ +0.12 +EJD > c,_, ,» where the value of ¢j.q

JN
0.11

is 1.38 when o = 0.05. For data set 1ul100, D = 0.00999 and (\/N+O.12+'—jD =.1013, so

JN

we cannot reject the null hypothesis of a uniform distribution. For data set 2u100, D = 0.00997,

and (\/ﬁ +0.12 + EJD =.1010 and again we cannot reject the null hypothesis.

IN

Summary Statistics and Graphical Comparison: N =1000

Figure 18 shows that the samples generated for a uniform with bounds [0,1] do follow a uniform
distribution. The mean is extremely close to 0.50 for both 1u1000 and 2u1000. The standard
deviation is also close to 0.2887 in both cases. The histogram shows that there are the same
number of points (100) in each bin [0,0.1) [0.1,0.2) etc. The stem-and-leaf plot was not printed
because it was too large with this many points at the resolution JMP output.

[1uio00 |[2ui000 |
1] 1]
0.9 0.9
0.8 0.8
0.7 0.7
0.6 0.6
0.5 0.5
0.4 0.4
0.3 0.3
0.2 0.2
0.1 0.1
0 0
[ Quantiles [ Quantiles
100.0% maximum 0.99903 100.0% maximum 0.99941
99.5% 0.99570 99.5% 0.99508
97.5% 0.97572 97.5% 0.97588
90.0% 0.89999 90.0% 0.90058
75.0% quartile  0.75046 75.0% quartile 0.75005
50.0% median  0.49994 50.0% median 0.50004
25.0% quartile  0.24990 25.0% quartile  0.24981
10.0% 0.09944 10.0% 0.09972
2.5% 0.02447 2.5% 0.02485
0.5% 0.00471 0.5% 0.00441
0.0% minimum 0.00019 0.0% minimum 0.00060
| Moments | Moments
Mean 0.5000052 Mean 0.4999916
Std Dev 0.288813 Std Dev 0.2888237
Std Err Mean 0.0091331 Std Err Mean 0.0091334
upper 95% Mean 0.5179274 upper 95% Mean 0.5179144
lower 95% Mean 0.482083 lower 95% Mean 0.4820687
N 1000 N 1000
[ Confidence Intervals | [Confidence Intervals |
Parameter Estimate Lower CI Upper CI 1-Alpha Parameter Estimate Lower CI Upper CI 1-Alpha
Mean 0.500005 0.482083 0.517927 0.950 Mean 0.499992  0.482069 0.517914 0.950
Std Dewv 0.288813  0.276686 0.30206 Std Dev 0.288824  0.276697 0.302071

Figure 18. Summary Statistics, Uniform Distribution, N = 1000
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Formal statistical testing is not very useful in the case of the Chi-square test, since the Chi-square
test statistics is zero and again we accept the null hypothesis that the data come from a uniform
distribution. For the K-S test, the test statistic D is 0.001 for both samples. For both data sets

1u1000 and 2ul1000 , D = 0.001and \/ﬁ+0.12+& D =.0317, so we cannot reject the null

N

hypothesis of a uniform distribution.

Summary Statistics and Graphical Comparison: N = 10000

Figure 19 shows that the samples generated for a uniform with bounds [0,1] do follow a uniform
distribution. The mean is extremely close to 0.50 for both 1u10000 and 2u10000. The standard
deviation is also close to 0.2887 in both cases. The histogram shows that there are the same
number of points (100) in each bin [0,0.1) [0.1,0.2) etc.

[1ui0000 |[2u10000
1 1
0.9 0.9
0.8 0.8
0.7 0.7
0.6 0.6
0.5 0.5
0.4 0.4
0.3 0.3
0.2 0.2
0.1 0.1
04 04

[ Quantiles [ Quantiles
100.0% maximum 0.99994 100.0% maximum 0.99991
99.5% 0.99501 99.5% 0.99503
97.5% 0.97509 97.5% 0.97504
90.0% 0.90003 90.0% 0.50002
75.0% quartile 0.75002 75.0% quartile  0.75001
50.0% median  0.50004 50.0% median  0.49998
25.0% quartile 0.25000 25.0% quartile  0.24997
10.0% 0.09952 10.0% 0.10000
2.5% 0.02496 2.5% 0.02498
0.5% 0.00498 0.5% 0.00495
0.0% minimum 0.00002 0.0% minimum 0.00005

| Moments | Moments
Mean 0.4999996 Mean 0.5000003
Std Dev 0.2886893 Std Dev 0.2886899
Std Err Mean 0.0028869 Std Err Mean 0.0028869
upper 95% Mean 0.5056585 upper 95% Mean 0.5056593
lower 95% Mean 0.4543407 lower 95% Mean 0.4943414
N 10000 N 10000

[ Confidence Intervals | [Confidence Intervals |
Parameter Estimate Lower CI Upper CI 1-Alpha Parameter Estimate Lower CI Upper CI 1-Alpha
Mean 0.5 0.494341 0.505659 0.950 Mean 0.5 0.494341 0.505659 0.950
Std Dewv 0.288689 0.284743 0.292747 Std Dev 0.28869  0.284744 0.292748

Figure 19. Summary Statistics, Uniform Distribution, N =100
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Formal statistical testing is again not very useful in the case of the Chi-square test, since the Chi-
square test statistics is zero and again we accept the null hypothesis that the data come from a
uniform distribution. For the K-S test, the test statistic D is 0.0001 for both samples. For both data

sets 1u1000 and 2u1000 , D = 0.001and (\/ﬁ +0.12 +EJD =.010, so we cannot reject the null

N

hypothesis of a uniform distribution.
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7. Large Scale Tests

The test results presented above for normal, lognormal, and uniform distributions were small tests:
only 2 variables of each distribution type were sampled. To mimic the needs of the ASC
milestones and also to ensure more robustness in our verification tests, we ran some larger
verification tests. The test results are shown in Table 3.

The test set-up is as follows: we produced joint samples of 30 or 50 variables simultaneously, with
sample sizes ranging from 50 to 10000 samples. This means that we produced a joint sample for 30
normal random variables, for example, and not 30 normal random variables each sampled
individually. Often, in Monte Carlo sampling, there are fairly large correlations between input
variable sample values (e.g., variable 16 may be correlated with variable 23 with a correlation
coefficient of .4 or even higher). If these random variables are independent which is often the case,
one would NOT like to have high correlation values in the sample data. We used the restricted
pairing method developed by Iman and Conover to specify that zero or near-zero correlation be
induced between the sample variable values. The restricted pairing method worked extremely well.
For example, in the sample set of 10000 samples, the correlations between various pairs of input
variables were on the order of 107,

The testing showed that all of the verification tests for normal, lognormal, and uniform distributions
passed the Kolmogorov-Smirnov test. That is, we cannot reject the hypothesis that these 30 or 50
random variables generated each come from a normal, lognormal, or uniform distribution,
respectively. The test results also show that the summary statistics converge as the sample size
increases, which is what we expect. As sample size goes from 50 to 10,000, we see that the average
sample mean and average sample standard deviation approach the true mean and standard deviation
for each of the three distribution types.

Number of Average True
Random Vars Sample Size K-S Test Average mean True Mean Std.Deviation Std. Deviation
Normal 30 50 All pass 0.000149 0 1.016044 1
50 100 All pass -0.000310 0 1.008588 1
50 1000 All pass -0.000015 0 1.000501 1
50 10000 All pass -0.000001 0 1.000047 1
Lognormal 30 50 All pass 1.664300 1.647821 2.147719 2.161197
50 100 All pass 1.651513 1.647821 2.117042 2.161197
50 1000 All pass 1.649248 1.647821 2.173071 2.161197
50 10000 All pass 1.647750 1.647821 2.157194 2.161197
Uniform 30 50 All pass 0.499936 0.500000 0.291800 0.288675
50 100 All pass 0.500027 0.500000 0.290231 0.288675
50 1000 All pass 0.500000 0.500000 0.288823 0.288675
50 10000 All pass 0.500000 0.500000 0.288689 0.288675

Table 3. Test Results for Large Scale Verification Tests
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8. Summary

This document provides verification test results for normal, lognormal, and uniform distributions
that are used in Sandia’s Latin Hypercube Sampling (LHS) software as accessed through
DAKOTA. The purpose of this testing is to verify that the sample values being generated in LHS
are distributed according to the desired distribution types. The testing of distribution correctness is
done by examining summary statistics, graphical comparisons using quantile-quantile plots, and
format statistical tests such as the Chi-square test, the Kolmogorov-Smirnov test, and the Anderson-
Darling test. The overall results from the testing indicate that the generation of normal, lognormal,
and uniform distributions in LHS as accessed through DAKOTA is acceptable. LHS has been a
powerful tool for sampling statistical distributions in uncertainty analyses for more than 20 years.
The LHS UNIX version that is implemented in DAKOTA represents an investment to modernize
the code capabilities and allow this valuable uncertainty analysis capability to remain viable for
large-scale simulation models running under a Linux or UNIX operating system.
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